

Signal Analyzer R&S FSIQ

Analysis in frequency, time and modulation domain in one box

- Spectrum analysis with ultrawide dynamic range for sophisticated ACPR measurements NF = 18 dB/TOI = +20 dBm (R&S FSIQ7)
- Integrated vector signal analyzer for universal analysis of digital and analog modulated signals BPSK to 16QAM, (G)MSK, AM, FM, φM
- Vector signal analyzer for WCDMA/ 3GPP
- Symbol rate up to 6.4 Msymbol/s
- High-speed synthesizer with 5 ms sweep time for FULL SPAN (R&S FSIQ 3/7)
- High display update rate up to 25 sweeps/s

- Large colour display with high resolution (24 cm/9.5" TFT)
- 75 dB ACPR for WCDMA
- 82 dB ACPR in alternate channel for WCDMA
- True RMS detector for precise and repeatable measurements of any signal type

R&S FSIQ — the signal analyzer for the 3rd mobile radio generation

Features in brief

- 3 models and frequency ranges R&S FSIQ3: 20 Hz to 3.5 GHz R&S FSIQ7: 20 Hz to 7 GHz R&S FSIQ26: 20 Hz to 26.5 GHz
- Resolution bandwidth 1 Hz to 10 MHz in 1/2/3/5 steps
- 5-pole resolution filters with high selectivity
- FFT filter with 1 Hz to 1 kHz RBW for fast measurements
- Displayed average noise floor
 —150 dBm typ. in 10 Hz bandwidth

- Third-order intercept +20 dBm with R&S FSIQ 7, +22 dBm with R&S FSIQ26
- Phase noise —150 dBc(1/Hz) at 5 MHz offset
- 75 dB ACPR dynamic range for WCDMA (4.096 MHz integration BW)
- Total level uncertainty <1 dB up to 2.2 GHz, <1.5 dB up to 7 GHz
- RMS detector for high-precision power measurements irrespective of waveform
- Fast spectrum analysis with 5 ms sweep time for full span (R&S FSIQ3/7)

- Fast time domain analysis with 1 μs zero span sweep time
- Integrated broadband vector signal analyzer for all main mobile radio standards and modulation modes with versatile result display: I and Q signal, magnitude and phase, vector and constellation diagrams, spread sheets with numeric evaluation of modulation errors and demodulated bit sequence

R&S FSIQ – the one-box solution in signal analysis

The R&S FSIQ provides in a single unit comprehensive and easy-to-use measurement functions in the

- frequency domain
- time domain
- modulation domain

Frequency domain

In the frequency domain, the R&S FSIQ measures intermodulation and harmonics with great accuracy. The high 3rd-order intercept point in conjunction with the extremely low noise floor yields an intermodulation-free dynamic range of >110 dB and ensures reliable performance of even sophisticated measurements. The excellent dynamic range and the optimized phase noise values make the R&S FSIQ an ideal tool for ACPR (adjacent-channel power ratio) measurements in all mobile radio systems and in

particular for WCDMA. The maximum ACPR value for WCDMA in 4.096 MHz bandwidth is 75 dB and is already attained at –12 dBm input level.

The RMS detector available for all bandwidths up to 10 MHz is the ideal tool for precise power measurements whatever

the waveform. Channel power and adjacent-channel power can accurately be measured and displayed irrespective of any signal statistics. Measurement challenges such as repeatability of power measurement of modulated signals (e.g. CDMA) can thus be eliminated.

Time domain

In the time domain, the R&S FSIQ features all modern capabilities of burst analysis in TDMA systems; gate functions, trigger delay and integrated RF trigger in conjunction with a short sweep time of 1 μs ensure precise measurement of the timing characteristics of all main mobile radio systems.

Thanks to the wide range of bandwidths available up to 10 MHz the effect of the measuring instrument becomes negligible, in particular in the case of measurements on broadband systems.

Various marker functions in conjunction with editable gated sweeps allow RMS, average and peak measurements to be carried out over any selectable time.

Modulation domain

In the modulation domain, the integrated vector signal analyzer provides diverse measurements on signals with digital or analog modulation. The variety of settings that can be called simply at a keystroke covers 18 mobile radio standards from GSM, NADC, IS95 through to WCDMA. These convenient presettings make it superfluous for the user to spend valuable time in looking up specifications and go towards enhancing the measurement reliability.

Display of the results caters to practically each and every need: in addition to vector and constellation diagrams, I/Q signal and eye/trellis diagrams, tables with modulation errors including the demodulated bit sequence are particularly useful. EVM (error vector magnitude), phase and frequency error, waveform factor and I/Q offset are output as numeric values, with RMS and peak value being shown separately.

Besides the mobile radio standards, the R&S FSIQ can also be used as a general-purpose measurement demodulator for non-standard modulation methods. The list of the 13 digital demodulators available ranges from BPSK, QPSK and (G)MSK through to 16QAM. With a symbol rate selectable up to 6.4 Msymbol/s and cosine and root-cosine filters adjustable in 0.01 step width, configuration of customized systems is no problem.

The analog demodulators using digital technique throughout feature longterm and temperature-independent measurements, e.g. of transmitter transients, or convenient measurement of incidental phase modulation (AM to ϕ M conversion) e.g. on travelling wave tubes.

R&S FSIQ — the signal analyzer for the 3rd mobile radio generation

Dynamic range, noise, and 1 dB compression point of Signal Analyzer R&S FSIQ

Dynamic range, noise, 3rd-order intercept point

High measurement speed for use in development and production

- The minimum sweep time for FULL SPAN is 5 ms (R&S FSIQ 3/7). The sweep is synthesizer-controlled for all frequency settings, thus providing high frequency accuracy of the displayed spectra
- The shortest sweep time in ZERO SPAN mode is 100 ns/div which is ideal for high-resolution time measurements on burst edges
- Up to 25 sweeps/s is an optimal prerequisite for applications in production or fast alignments
- High throughput on GPIB interface saves time and costs in production

Versatile test routines – convenient measurements

The R&S FSIQ excels in its wide variety of sophisticated test routines and evaluation tools which considerably enhance measurement reliability and speed:

- Automatic measurement of channel power, adjacent-channel power ratio (ACPR) and occupied bandwidth with free choice of channel bandwidths and detector to be used. For the ACPR measurement the availability of an RMS detector is of vital importance especially with modern WCDMA systems
- Marker functions for direct measurement of:
- phase noise
- C/N, C/N₀
- PEAK/NEXT PEAK (LEFT/RIGHT)/ MIN/NEXT MIN, etc
- bandwidth and shape factor

- Frequency counter with selectable resolution
- Up to four simultaneously active traces
- Split screen with independent measurement windows: time domain analysis/frequency analysis, frequency analysis/modulation analysis, etc
- Level, frequency and threshold lines as well as user-definable limit lines with pass/fail check
- Comprehensive documentation of results with hardcopy output on a wide variety of printers or as WMF or BMP files
- High-contrast 24 cm (9.5") TFT colour display with VGA resolution and userfriendly display of all important instrument settings for reliable and strainfree work

Applications

Mobile radio - digital and analog

WCDMA (1, 2)

2

Modern broadband communication systems place extremely stringent requirements on the spectral purity of all components. Phase noise, intermodulation and spurious suppression all play a role in the measurement of ACPR (adjacent-channel power ratio). The most stringent requirements are normally placed on the component characteristics. The R&S FSIQ is the ideal choice for this measurement; without any additional facility such as preselection it is able to attain an ACPR value of 75 dB at the optimum mixer level and power integration over 4.096 MHz (1). This excellent value is already attained at a mixer level of -12 dBm which means an additional benefit in component testing.

The integrated vector signal analyzer provides high-accuracy offline demodulation of the WCDMA signal so that signal distortion caused by the device under test can quickly and reliably be measured. The I and Q signal characteristics can precisely be measured with the aid of the marker functions (2 above). The numeric error table (2 below) shows all main modulation errors such as EVM or I/Q offset, with the demodulated bit sequence being displayed in addition. Coupled marker functions allow the I/Q signals to be allocated to the demodulated dibits (2).

Power ramp measurement (3)

To perform power ramp measurements (power time template) on TDMA systems such as GSM or NADC in line with standards, reference must be made to syn-

chronization sequences in order to establish a precise time reference (3). The R&S FSIQ supports this task with a wide variety of already programmed as well as user-editable bit sequences.

GATED SWEEP (4)

The GATED SWEEP function in the frequency domain is indispensable for the analysis of TDMA systems. The modulation spectrum (4) of burst signals can be measured without any interference being caused by switching the RF carrier on and off. Imbalance of the modulator under test or spurious emissions can quickly and reliably be determined.

- 5 GAP SWEEP: simultaneous measurement of pulse rise and fall time with high time resolution
- 6 Measurement of transmitter transients with an FM squelch of -30 dB
- 7 Measurement of incidental frequency/phase modulation or AM/\$\phi\$M conversion with simultaneous display of AM and FM component

7

6

GAP SWEEP (5): simultaneous measurement of pulse rise and fall time

The fast sweep time of 100 ns/div as well as the GAP SWEEP and pretrigger functions of the Signal Analyzer R&S FSIQ are the prerequisites for simultaneous measurement of the rise and fall time of an RF pulse with high time resolution. The center of the pulse, which is of no interest, is blanked. Even with a resolution bandwidth of 1 MHz the R&S FSIQ features a dynamic range of over 80 dB thanks to the high 1 dB compression point of +10 dBm.

Transmitter transients (6)

Simultaneous measurement of transmitter frequency and level transients is effectively supported by DC-coupled demodulators and selectable high resolution of the vertical axes (in this example 100 Hz/div). The SPLIT SCREEN mode detects level and deviation in separate windows with independently selectable parameters. Video trigger, trigger delay, pretrigger and squelch level can be adjusted for noise suppression in the absence of a signal level.

Measurement of incidental phase modulation, AM/ ϕ M conversion (7)

In many transmission systems, components such as amplifiers or modulators are operated close to saturation to improve their efficiency. The AM/pM conversion thus occurring causes errors in particular in digital phase-modulated systems.

The low incidental inherent modulation residues allow the AM/φM conversion to be measured up to high frequencies (e.g. 26.5 GHz with th R&S FSIQ26). The R&S FSIQ simultaneously displays the AM component (7 above) and the resulting FM or φM component (7 below). An AM signal with very low incidental FM/φM can be generated by means of I/Q modulation of the Tracking Generators R&S FSE-B9/-B11.

Designation	Туре	Use	Functions
Noise Measurement ¹⁾ software	R&S FS-K3	Noise figure measurements	Measurement of noise figure and temperature to Y-factor method Measurements on frequency-converting DUTs Frequency range same as basic unit, starting from 100 kHz Editor for ENR tables Runs on the internal controller (option) or on an external PC under Windows98/NT
Phase Noise Measurement Software ¹⁾	R&S FS-K4	Phase noise measurements	Easy-to-use phase noise measurements Measurement of residual FM and φM Logarithmic plot over 8 decades Runs on the internal controller (option) or on an external PC under Windows 98/NT
Application Firmware ¹⁾	R&S FSE-K10, Mobile R&S FSE-K11, BTS	Mobile radio transmit- ter measurements to GSM standards 11.10 and 11.20	Power ramp and power template Spectrum due to modulation and due to transients Spurious emissions Mean carrier power measurement Phase/frequency error (with option R&S FSE-B7)
Application Firmware ¹⁾²⁾	R&S FSE-K20, Mobile R&S FSE-K21, BTS	EDGE capability added to Application Firmware R&S FSE-K10/-K11	Modulation accuracy measurement including — EVM measurement using weighting filter to ETSI — 95:th percentile measurement — Measurement of origin offset suppression Limit lines for EDGE according to ETSI 05.05
Application Firmware ¹⁾³⁾	R&S FSE-K30, Mobile R&S FSE-K31, BTS	850 MHz extension for R&S FSE-K10/-K11 and R&S FSE-K20/-K21	Extension of frequency range for the GSM/EDGE 850 MHz band
Application Firmware ¹⁾	FSIQ-K71 ⁴⁾ , BTS	cdmaOne BTS code domain power mea- surements	Measurement of — code domain power — timing/phase offset — pilot channel power
Application Firmware ¹⁾	FSIQ-K72 ⁴), BTS FSIQ-K73 ⁴), Mobile (User Equipment UE)	3GPP/FDD transmitter measurements accord- ing to TS 25.141 and TS 34.121	Measurement of — code domain power — EVM — peak code domain power — OBW — ACLR — spectrum emission mask — CCDF

See separate data sheets.

Quality management at Rohde & Schwarz

Lasting customer satisfaction is our primary objective. The quality management system of Rohde & Schwarz meets the requirements of ISO 9001 and encompasses virtually all fields of activity of the company.

Rear view of R&S FSIQ

²⁾ R&S FSE-K10/-K11 required.

R&S FSE-K10/-K11 required, for EDGE R&S FSE-K20/-K21 is additionally necessary.

⁴⁾ R&S FSIQ-B70 required.

Specifications

	R&S FSIQ3	R&S FSIQ7	R&S FSIQ26	
Specifications apply under the following conditions:		-		
30 minutes warmup time at ambient temperature, spe Data without tolerances: typical values only. Data desi	cified environmental conditions met, cali	ibration cycle adhered to, and total	calibration performed.	
Frequency	gnated nominal apply to design param	leters and are not tested.		
Frequency range	20 Hz to 3.5 GHz	20 Hz to 7 GHz	20 Hz to 26.5 GHz	
Frequency resolution	20 112 to 0.5 G112	0.01 Hz	20 112 to 20.0 0112	
Reference frequency, internal nominal		0.01112		
Aging per day ¹⁾		1 x 10 ⁻⁹		
Aging per year 1)		2 x 10 ⁻⁷		
Temperature drift (0°C to +50°C)		8 x 10 ⁻⁸		
Total error (per year)		2.5 x 10 ⁻⁷		
External reference frequency		10 MHz or n x 1 MHz, n = 1 to 16		
Frequency display		with marker or frequency counter		
Resolution	(D.1 Hz to 10 kHz (dependent on spar	n)	
Error limit (sweep time >3 x auto sweep time)		error + 0.5% x span + 10% x resolu		
Frequency counter resolution		0.1 Hz to 10 kHz (selectable)		
Count accuracy (S/N >25 dB)	±(fre	equency x reference error + ½ (last	digit))	
Display range for frequency axis	0 Hz, 10 Hz to 3.5 GHz	0 Hz, 10 Hz to 7 GHz	0 Hz, 10 Hz to 27 GHz	
Resolution/error limit of display range		0.1 Hz/1%		
Display range with digital demodulation Number of displayed symbols				
Symbol rate ≤1 MHz	ma	ax. 1600 symbols (4 points per symb	pol)	
Symbol rate >1 MHz to <3.2 MHz	½ x symbol ra	ate / MHz x 1000 symbols in steps o	of 100 symbols	
Symbol rate ≥3.2 MHz	ma	ax. 1600 symbols (4 points per symb	ool)	
Display range with analog demodulation	3	3500/(demodulation bandwidth/Hz)	S	
Spectral purity (dBc(1Hz)) SSB phase noise, f ≤500 M	MHz, for carrier offset >1 MHz see diagra	ım below		
Carrier offset 100 Hz	< -87	< -81	< -81	
1 kHz	<-107	<-100	<-100	
10 kHz	<-120	<-114	<-114	
100 kHz ²⁾	<-119	<-113	<-113	
1 MHz ²⁾	<-138	<-132	<-132	
Sweep				
Display range 0 Hz		1 ms to 2500 s in 5% steps		
Display range ≥10 Hz		5 ms to 16000 s in steps ≤10%		
Error limit		<1%		
Sampling rate		50 ns (20 MHz A/D converter)		
Number of pixels (x axis)		500		
Time measurement	with	with marker and cursor lines (resolution 50 ns)		

SSB phase noise of the R&S FSIQ models

	R&S FSIQ3	R&S FSIQ7	R&S FSIQ26	
Resolution bandwidths with spectrum display Analog filters				
3 dB bandwidths		1 Hz to 10 MHz in 1/2/3/5 steps		
Bandwidth error limit	<u> </u>			
≤3 MHz		<10%		
5 MHz		<15%		
10 MHz	+25%, -10%			
Shape factor 60 dB:3 dB		·		
<1 kHz		<6		
1 kHz to 2 MHz	<12			
>2 MHz		<7		
Video bandwidths	< / 2			
FFT filters		7 112 to 10 11112 iii 17 27 07 0 0topo		
3 dB bandwidths		1 Hz to 1 kHz in 1/2/3/5 steps		
Bandwidth error limit		2%, nominal		
Shape factor 60 dB:3 dB		2.5 nominal		
Display range for frequency axis	min 25 v DDW	max. 100000 x RBW or 2 MHz (whi	chavar is lawarl	
	IIIIII. ZO X NBW,		CHEVEL IS IOMEL)	
Additional level error limit (ref. to RBW = 5 kHz)		<1 dB		
Max. display range		100 dB		
Inherent spurious response		<-100 dBm		
Level				
Display range		displayed noise floor to 30 dBm		
Maximum input level				
RF attenuation 0 dB	T			
DC voltage	0 V			
CW RF power		20 dBm (=100 mW)		
Pulse spectral density	97 dBμV/MHz			
RF attenuation ≥10 dB				
DC voltage		0 V		
CW RF power		30 dBm (= 1 W)		
Max. pulse voltage		150 V		
Max. pulse energy (10 ms)	1 m	nWs	0.5 mWs	
1 dB compression of input mixer (0 dB RF attenuation)		+10 dBm nominal		
Intermodulation				
3rd-order Intercept (TOI)	>64 dBc for f >100 MHz	>70 dBc for f >150 MHz	>74 dBc for f >150 MHz	
Intermodulation-free dynamic range, level 2 x -30 dBm, $\Delta f >$ 5 x RBW or 10 kHz, whichever is greater	(TOI >12 dBm, 18 dBm typ.)	(TOI >15 dBm, 20 dBm typ.)	(TOI >17 dBm, 22 dBm typ.) >60 dBc for f >7 GHz (TOI >10 dBm)	
Second harmonic intercept point (SHI)	>25 dBm, >40 dBm typ. for f <50 MHz >45 dBm, >50 dBm typ. for f >50 MHz		typ. for f <150 MHz typ. for f >150 MHz	
Displayed average noise level (DANL) (0 dB RF attenuation	n, RBW 10 Hz, VBW 1 Hz, 20 averag	es, trace average, span 0 Hz, termi	nation 50 Ω)	
Frequency 20 Hz	<-80 dBm	<-74	dBm	
1 kHz	<-110 dBm	<-104	4 dBm	
10 kHz	<-125 dBm	<-119 dBm		
100 kHz	<-135 dBm	<-129	9 dBm	
1 MHz	<-145 dBm, -150 dBm typ.	<-142 dBm, -	-145 dBm typ.	
10 MHz to 6 GHz	<-145 dBm, -150 dBm typ.	<-142 dBm, -147 dBm typ.	<-138 dBm, -140 dBm typ.	
6 GHz to 7 GHz		<-139 dBm	<-135 dBm, -138 dBm typ.	
	_	- 100 dBiii	<-138 dBm, -140 dBm typ.	
7 GHz to 18 GHz	I .			
7 GHz to 18 GHz	_	_	/_13h dkm _130 dkm +m	
18 GHz to 26.5 GHz	- 170 dP	-	<-135 dBm, -138 dBm typ.	
18 GHz to 26.5 GHz Maximum dynamic range	– 170 dB			
18 GHz to 26.5 GHz Maximum dynamic range 1 dB compression to DANL (RBW 1Hz)	- 170 dB			
18 GHz to 26.5 GHz	- 170 dB	- 165 >80 dB, >90 dB typ.		

	R&S FSIQ3	R&S FSIQ7	R&S FSIQ26
Spurious response (f $>$ 1 MHz, without input signal, 0 dB atte	enuation)		
Span <30 MHz		<-110 dBm	
Span ≥30 MHz		<-100 dBm	
f _{in} = 25.175 MHz, 25.060 MHz		<-100 dBm	
f _{in} = 60 MHz, 5.7172 GHz	_	<-1	00 dBm
f _{in} = 14.1894 GHz, 15.6722 GHz (span >10 MHz)		_	<-90 dBm
Other interfering signals (mixer level <10 dBm)	<-80 dB	<-	75 dB
Level display (spectrum mode)			
Result display	500 x 400 pixel (on	e diagram), max. 2 diagrams with	independent settings
Log level axis		10 dB to 200 dB, in steps of 10 d	
Linear level axis	10% of reference le	evel per level division, 10 divisions	or logarithmic scaling
Trace		ım (with two diagrams on screen, i	
Trace detector	·	n Peak, Auto Peak (Normal), Sampl	
Trace functions		ear/Write, Max Hold, Min Hold, Av	•
Setting range of reference level	0.0	an, miles, max mera, miles a, miles	
Logarithmic level display	_	130 dBm to 30 dBm, in steps of 0.	I dB
Linear level display		7.0 nV to 7.07 V, in steps of 1%	1 45
Units of level axis	dRm dRn// dRm// dE	BpW (log level display); V, A, W, dE	RuΔ (linear level display)
Level measurement error limit (–40 dBm, RF attenuation		or bandwidths from 10 Hz to 30 kH	•
20 dB, ref. level –15 dBm, RBW 5 kHz)	The values are valid it	or pariawiatiis iioiii 10 112 to 30 km	z dilu 100 kiiz to 10 ivii iz
Absolute error limit at 120 MHz		<0.3 dB	
Freqency response (10 dB RF atten.)			
<2.2 GHz		<0.5 dB	
2.2 GHz to 3.5/7 GHz		<1 dB	
7 GHz to 18 GHz		-	$<2 dB^{3)}$
18 GHz to 26.5 GHz		_	<2.5 dB ³⁾
	<0.3 dB		<2.J ub -
Attenuator switching error limit			
Error of reference level setting	<0.2 dB, typ. 0.1 dB		
Display nonlinearity			
Log level display	0.0.11	D (DD)4/ +00111 \ 0.0 ID (DD)4/-	400 111)
0 dB to -70 dB	<u.2 d1<="" td=""><td>B (RBW \leq 30 kHz), $<$0.3 dB (RBW \geq</td><td>≥1UU KHZ)</td></u.2>	B (RBW \leq 30 kHz), $<$ 0.3 dB (RBW \geq	≥1UU KHZ)
−70 dB to −95 dB		<1 dB (RBW ≤ 30 kHz)	
Linear level display		5% of reference level	
Bandwidth switching error limit	T		
1 Hz to 30 kHz/100 kHz to 500 kHz		<0.2 dB	
1 MHz to 10 MHz		<0.3 dB	
Total measurement error limit			
(Temperature range 20°C to 30°C, RBW 5 kHz to 30 kHz/300) kHz/1 MHz, stop frequency ≤ 2.2	GHz, signal level 0 dB to 70 dB be	elow reference level,
sweep time ≥ 3x auto sweep time)	05 107 11 40 10 05		10.10.10.05
10 MHz to 2.2 GHz	≤0.5 dB (with 10 dB RF	attenuation), ≤0.6 (with 20 dB, 30	aß, 40 dß KF attenuation)
(0 dB to -50 dB, span/RBW <100) 95% confidence level		=	
<2.2 GHz		<1 dB	
2.2 GHz to 3.5/7 GHz		< 1.5 dB	21
7 GHz to 18 GHz	_	< 2.	5 dB ³⁾
18 GHz to 26.5 GHz		_	< 3 dB ³⁾
Measurement of digital modulation signals			
Modulation formats		SK, DQPSK, π/4-DQPSK, 8PSK, D8I ISK, GMSK, 2FSK, 2GFSK, 4FSK, 4G	
0 . . .	WCDMA, 3GPP, IS95 CDMA Forward/Reverse, GSM, EDGE, NADC, TETRA, PDC, PHS, CDPD, DECT, PWT, APCO25, CT2, ERMES, FLEX, MODACOM, TFTS		
Selectable standards	CDPD, DECT, P	WT, APCU25, CTZ, ERIVIES, FLEX, I	VIODAGOIVI, II IO
Selectable standards Filtering	CDPD, DECT, P	WT, APGU25, CTZ, ERMES, FLEX, I	WODACOW, 1110
	raised 0	cosine, square root raised cosine, .14 to 1 in steps of 0.01 (PSK > 1 N .14 to 1 in steps of 0.01 (FSK > 2 N	Gaussian IHz)

Filters to specific standards FIEVE Reseal B x T = 1.72 and 2.44 FIEVE RESEARCH TO THE STANDARD		D00 F010 2 D00 F010 20
FIEX Bessel B x T = 122 and 2 44 Bessel B x T = 122 and 2 44 BESSES CRMA (1935) forward and reverse channel APEDZA FM CDDE BOST BO	Eiltara ta angaifia atandarda	R&S FSIQ3 R&S FSIQ7 R&S FSIQ26
BMMES Bessel H. I. = 1.75		Possel P.v.T. 1.22 and 2.44
CDMA (SSN)		
APPOINTS FM. Measurements (except FSK) Measurements (except FSK) I and D signals (filtrond, synchronized to frequency and symbol clock) I and D referror signals (soliculated from demodulated bits) I and D referror signals (soliculated from demodulated bits) I and D referror signals (soliculated from demodulated bits) I and D referror signals (soliculated from demodulated bits) I and D referror (regime tode and pheae), error vector		
Measurements (except FSK)	•	forward and reverse channel
Measurements (except FSK) I and 0 signals if filtered, synchronized to frequency and symbol clock) I and 0 common signals (calculated from demodulated bits) I and 0 common signals (calculated from demodulated bits) I and 0 common signals (calculated from demodulated bits) I and 0 common signals (calculated from demodulated bits) I and 0 common signals (calculated from demodulated bits) I and 0 common signals (calculated from demodulated bits) I and 0 common signals (calculated from demodulated data) I and 0 common signals (calculated from demodulated data) I and 0 common signals (calculated from demodulated data) I and 0 common signals (calculated from demodulated data) I and 0 common signals (calculated from demodulated data) I and 0 common signals (calculated from demodulated data) I and 0 common signals (calculated from demodulated data) I and 0 common signals (calculated from demodulated data) I and 0 common signals (calculated from signals (ca		
I and D signals (Ritbood, synchronized but frequency and symbol clock) I and D effective symbols colorable from conditional bits) I and D error (preprinted and phase), error vector bit stream/modulation error (symbols demodulated at ideal decision points and table of all modulation		90 kHz root raised cosine (specific to EDGE standard)
In and Currence signals (calculated from demodulated bits) International and planes), error vector magnitude and planes), error vector symbols demodulated at ideal decision points and table of all modulation retrors) Project Pr	Measurements (except FSK)	
frequency demodulated signal (filtered, synchronized to symbol clock) FSK reference signal (calculated from demodulated data) ISK carro signal data/bit stream/modulation error symbols demodulated at tibed decision points and table of all modulated.		I and Ω reference signals (calculated from demodulated bits) I and Ω error (magnitude and phase), error vector bit stream/modulation error (symbols demodulated at ideal decision points and table of all modulation
FSK references signal [calculated from demodulated data] FSK error signal data/bit stream/modulation error (sprimbol demodulated at ideal decision points and table of all modulation error) FSK error signal magnitude error (sprimbol demodulated at ideal decision points and table of all modulation errors) magnitude error (sprimbol demodulated at ideal decision points and table of all modulation errors) magnitude error (supram in-phase and/or quadrature signal magnitude and phase (level) ever diagram, retired idealgram error vector magnitude (FWM) in %, magnitude error, phase/frequency error, in-phase and quadrature orror signals magnitude error (phase) error vector magnitude error, phase/frequency error, phase/frequency error, in-phase error*, frequency error, phase/frequency error, phase/frequen	Measurements with FSK	
constellation diagram, vector diagram in phase and/or quadrature signal magnitude and phase (level) explained and phase (level) explained and phase (level) explained phase (level), frequency deviation, explained error, phase and quadrature error signals explained perror in the explained perror in the explained perror in the explained perror in the explained error in the expl		FSK reference signal (calculated from demodulated data) FSK error signal data/bit stream/modulation error (symbols demodulated at ideal decision points and table of all modu-
In-phase and/or quadrature sinale magnitude and phase (level) eye diagram, trellis diagram error vector magnitude (PM) in %, magnitude error, phase/frequency error, (In-phase error, frequency error, Pagnitude error signals)	Display modes (except FSK)	
Magnitude (level), frequency deviation, eye diagram (frequency signal), frequency deviation error, magnitude error (magnitude error file frequency error), from again frequency signal), frequency deviation error, magnitude error file frequency error, FSK reference deviation from the file frequency error from the file	Numerical error limit read-out (*rms and peak value)	in-phase and/or quadrature signal magnitude and phase (level) eye diagram, trellis diagram error vector magnitude (EVM) in %, magnitude error, phase/frequency error, in-phase and quadrature error signals error vector magnitude*, magnitude error*, phase error*, frequency error, I/Q offset, I/Q imbalance,
Magnitude (level), frequency deviation, eye diagram (frequency signal), frequency deviation error, magnitude error. FSK frequency deviation, frequency error, FSK reference deviation. Symbol rate Symbol rate Symbol rate x (1+ ox) = 8 MHz	Disalas and a side FOV	апірінше отоор, р тастог
Numerical error limit read-out (*ms and peak value) deviation error*, magnitude error, FSK frequency deviation, frequency error, FSK reference deviation. Symbol rate 320 Hz to 6.4 MHz (symbol rate x (1+ α)) < 8 MHz Samples/symbol 4 ¹ 1, 2, 4, 8, 16 200 kHz < symbol rate ≤400 kHz	DISPIAY MODES WITH FSK	
Symbol rate 320 Hz to 6.4 MHz (symbol rate x (1+ cz)) < 8 MHz Samples/symbol *9 1, 2, 4, 8, 16 200 kHz < symbol rate ≤400 kHz	Numerical error limit read-out (*rms and neak value)	, and the second
Samples/symbol *		
Symbol rate ≤200 kHz 1, 2, 4, 8, 16 200 kHz < symbol rate ≤400 kHz	•	020 112 to 0.1 Mile (0) illustratio X (11 W/) < 0 Mile
200 kHz <symbol khz<="" rate="" td="" ≤400=""> 1, 2, 4, 8 Symbol rate >400 kHz 1, 2, 4 Synchronization inter-I to symbol clock and frequency/phase Memory depth 1895 CDMA Forward / Reverse, DECT 600 symbols WCDMA, 36PP, GSM, EDGE, PDC, NADC, TFIS, CT2, ERMES, MODACOM, Flex, APC025, CDPD 1600 symbols Level measurements with digital demodulation Peak power range −60 dBm to +30 dBm Absolute level error limit Mean power (0 dB to 10 dB below reference level) f SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL</symbol>		1 2 4 8 16
Symbol rate >400 kHz 1, 2, 4 Synchronization internal to symbol clock and frequency/phase Memory depth 5895 CDMA Forward /Reverse, DECT 600 symbols WCDMA, 3GPP, GSM, EDGE, PDC, NADC, TFTS, CT2, ERMES, MDDACOM, Flex, APC025, CDPD 1600 symbols Level measurements with digital demodulation Peak power range —60 dBm to +30 dBm Absolute level error limit Mean power (0 dB to 10 dB below reference level) 5 <2, 2 GHz <1 dB 2, 2 GHz to 7 GHz <1, 5 dB 7 GHz to 18 GHz <1, 5 dB 8 GHz to 26,5 GHz <1 dB 8 GHz to 26,5 GHz <2, 5 dB ³) 8 GHz to 26,5 GHz <2, 5 dB ³) 8 GHz to 26,5 GHz <2, 5 dB 8 GHz to 26,5 GHz <2, 5 dB 9 GHz to 10 dB below reference level <0, 2 dB 10 dB to 10 dB below reference level <0, 2 dB 10 dB to 10 dB below reference level WCDMA 60 dB 9 GSM	·	
Synchronization internal to symbol clock and frequency/phase Memory depth 1S95 CDMA Forward /Reverse, DECT 600 symbols WCDMA, 3GPP, GSM, EDGE, PDC, NADC, FTFS, CT2, ERMES, MODACOM, FIEx, APCO25, CDPD 1600 symbols Level measurements with digital demodulation Peak power range −60 dBm to +30 dBm Absolute level error limit Mean power (0 dB to 10 dB below reference level) f ≤2.2 GHz <1 dB	•	
Memory depth IS95 CDMA Forward /Reverse, DECT 600 symbols WCDMA, 3GPP, GSM, EDGE, PDC, NADC, TFTS, CT2, ERMES, MODACOM, Flex, APC025, CDPD Level measurements with digital demodulation Peak power range	,	1.7
SSS CDMA Forward /Reverse, DECT 600 symbols	•	Internal to symbol clock and frequency/phase
WCDMA, 3GPP, GSM, EDGE, PDC, NADC, TFTS, CT2, ERMES, MODACOM, Flex, APC025, CDPD 1600 symbols Level measurements with digital demodulation Peak power range −60 dBm to +30 dBm Absolute level error limit Mean power (0 dB to 10 dB below reference level) < 1 dB		000
Absolute level error limit Mean power (0 dB to 10 dB below reference level) f ≤2.2 GHz <1 dB	WCDMA, 3GPP, GSM, EDGE, PDC, NADC, TFTS, CT2,	·
Absolute level error limit Mean power (0 dB to 10 dB below reference level) f ≤2.2 GHz <1 dB	Destruction and a second secon	CO JD.,, 4-, 200 JD.,
Mean power (0 dB to 10 dB below reference level)f ≤2.2 GHz<1 dB	-	-00 dbiii tu +30 dbiii
f ≤2.2 GHz <1 dB 2.2 GHz to 7 GHz <1.5 dB		
2.2 GHz to 7 GHz <1.5 dB		4 ID
T GHz to 18 GHz C 2.5 dB³)		
18 GHz to 26.5 GHz		
Relative level error limit Mean power (0 dB to 10 dB below reference level) 0.2 dB 10 dB to 50 dB below reference level (0.0325/dB − 0.125) dB Dynamic range for burst measurement (mean power, ref. level ≥ −10 dBm, peak power = ref. level +1 dB, low noise mode, points/symbol <4)		
Mean power (0 dB to 10 dB below reference level) 0.2 dB 10 dB to 50 dB below reference level (0.0325/dB − 0.125) dB Dynamic range for burst measurement (mean power, ref. level ≥ −10 dBm, peak power = ref. level +1 dB, low noise mode, points/symbol <4) WCDMA 60 dB +1 dB, low noise mode, points/symbol <4) GSM 74 dB NADC 78 dB TETRA 79 dB Time reference (nominal) without clock synchronization <1/(2 x symbol rate x points/symbol)		– <3 dB ³⁾
10 dB to 50 dB below reference level (0.0325/dB − 0.125) dB Dynamic range for burst measurement		
Dynamic range for burst measurement (mean power, ref. level ≥ -10 dBm, peak power = ref. level +1 dB, low noise mode, points/symbol <4)		
(mean power, ref. level ≥ −10 dBm, peak power = ref. level +1 dB, low noise mode, points/symbol <4) GSM 74 dB NADC 78 dB TETRA 79 dB TETRA 79 dB Tetra 79 dB Tetra 79 dB Tetra 79 dB Tetra 79 dB Tetra 79 dB Tetra 79 dB Tetra 79 dB Tetra 79 dB		(0.0325/dB – 0.125) dB
+1 dB, low noise mode, points/symbol <4) GSM 74 dB NADC 78 dB TETRA 79 dB Time reference (nominal) without clock synchronization MSK/GMSK modulation <p><1/(2 x symbol rate x points/symbol)</p>	· · · · · · · · · · · · · · · · · · ·	
without clock synchronization MSK/GMSK modulation <1/(2 x symbol rate x points/symbol)		GSM 74 dB NADC 78 dB
MSK/GMSK modulation <1/(2 x symbol rate x points/symbol)	Time reference (nominal)	
, , , , , , , , , , , , , , , , , , ,	without clock synchronization	
PSK/QAM/FSK modulation <1/(2 x symbol rate)	MSK/GMSK modulation	<1/(2 x symbol rate x points/symbol)
	PSK/QAM/FSK modulation	<1/(2 x symbol rate)

	R&S FSIQ3	R&S FSIQ7	R&S FSIQ 26
with clock synchronization		<0.001 x 1/(symbol rate)	
Residual error limit in modulation measurements	· ·	level to reference level – 6 dB, S/N > reraging ≥10, analog bandwidth >10	
General modulation modes (except FSK)	>15 X Symbol rate, local suppressi	ion at 0 Hz input frequency)	
Error vector magnitude (EVM) and magnitude error (f <1 Gl	47) 4)		
Symbol rate ≤30 kHz	0.5% rms	0.7%	rme
Symbol rate 30 kHz to 300 kHz	1% rms	1.4%	
Symbol rate 300 kHz to 1 MHz	2% rms	2.8%	
Symbol rate 1 MHz to 4.2 MHz	2% rms	2.0% 2% ri	
Symbol rate 4.2 MHz to 6.4 MHz	2.4% rms	2.4%	
Phase error (f < 1 GHz) ⁵⁾	2.4/0 11115	Z.4/0	11115
Symbol rate ≤ 30 kHz	0.3° rms	0.4° r	me
Symbol rate 30 kHz to 300 kHz	0.5° rms	0.4 T	
Symbol rate 300 kHz to 1 MHz	1.5° rms	2° rr	
Symbol rate 1 MHz to 4.2 MHz	1,5° rms	2°rn	
Symbol rate 4.2 MHz to 6.4 MHz	2° rms	2.8° r	
Frequency error		\times 10 ⁻⁶ + 0.1 Hz + reference error \times	
I/O offset error	± (symbol rate × 3	0.2% (–54 dB)	carrier riequericy)
Errors with modulation standards		0.276 (=34 db)	
GSM, DCS1800, PCS1900	nh	ase error ≤ 0.5° rms, <1.5° peak typ	
NADC, CDPD		EVM $\leq 0.5\%$ rms, $< 1.5\%$ peak typ.	J.
TETRA, PDC, PHS			
PWT	EVM ≤ 0.7% rms, <2% peak typ.		
IS95 CDMA, forward/reverse channel		EVM \leq 1% rms, $<$ 3% peak typ. ρ factor \geq 0.9995	
WCDMA		$EVM \le 1.8\% \text{ rms}, < 5\% \text{ peak typ}.$	
General FSK modulation modes (input level ≥10 dBm, low		LVIVI \$ 1.070 11113, \$ 370 peak typ.	
Symbol rate < 300 kHz	-110136 111006, 1 <u>21 0112</u>		
Deviation error limit	$1.5\% \text{ rms} + x_{\text{dev}}^{4) (6)}$	2% rms +	X _{dov} 5) 6)
FSK deviation	1.5% of reference deviation ⁴⁾	2% of referenc	
Magnitude error	1% rms	1.4%	
Frequency offset	0.5% of reference deviation + error of ref. frequency ⁴⁾	0.7% of reference deviation	+ error of ref. frequency ³⁾
Symbol rate 300 kHz to 2 MHz			
Deviation error limit	$2\% \text{ rms} + x_{\text{dev}}^{4) (6)}$	2.8% rms +	- X _{dev} 5)6)
FSK deviation	2% of reference deviation ⁴⁾	2.8% of referen	
Magnitude error	2% rms 0.5% of reference deviation +	2.8% of reference deviation	
Frequency offset	error of ref. frequency ⁴⁾	0.7% of reference deviation	+ end of ref. frequency
Symbol rate > 2 MHz (within 8 MHz demodulation BW)			
Deviation error limit	4% rms + x _{dev} ^{4) 6)}	5.6% rms +	- X _{dev} . 5)6)
FSK deviation	4% of reference deviation ⁴⁾	5.6% of referen	
Magnitude error	2% rms	2.8%	
Frequency offset	0.5% of reference deviation + error of reference frequency	0.7% of reference deviation +	. ,
FSK standards	· ·	dBm, low-noise mode, all standards, ε nts/symbol, ERMES and FLEX: 16 poin	•
DECT		≤2% rms, <6% peak typ.	
MODACOM, CT2	≤1.5% rms, typ. <3% peak typ.		
ERMES, FLEX		≤2% rms, typ. <6% peak typ.	
Measurement of analog modulation signals			
Demodulation bandwidth			
Realtime demodulation		5 kHz to 200 kHz in steps of 1,2,3,5	
Offline demodulation		5 kHz to 5 MHz in steps of 1,2,3,5	
Demodulation length (max. sweep time)		3500/(demod. bandwidth/Hz) s	
Read-out	display of: peak and rms values of	er (AM DC-coupled), or modulation s f modulation depths or deviations of nodulation); AF frequency; carrier po modulation	main demodulation; SINAD val-

	R&S FSIQ3	R&S FSIQ7	R&S FSIQ 26
The following specifications are valid for demodulation ban	dwidth ≤2 MHz, resolution bandwid	dth ≥5 x demodulation bandwidt	h, RF input level ≤—10 dBm,
reference level setting = peak input level $+ 0 dB to +6 dB$.			
Amplitude demodulation			
Range		up to 100%	
AF			
Offline demodulation		0.001 to 0.2 x demod. BW	
Realtime demodulation	30	O Hz to 0.2 x demod. BW, max. 2	0 kHz
Error		≤ 5% of result + residual AM	
Distortion (realtime demodulation)			
SINAD 1 kHz with m = 80%, LP 3 kHz		>46 dB	
Residual AM			
Demod. BW ≤100 kHz		0.2% rms	
Demod. BW >100 kHz	0.2% + ^	/demodulationbandwidth/	100kHz rms
Incidental AM with FM		≤2% + residual AM	<u> </u>
	$(\Delta f = 0.2 \text{ x demod. BW, } f_{mod} = 0.0 \text{ mod.}$) kHz, lowpass 5% of demod. BW (
	· mod	3 kHz, center frequency tuning	
Frequency demodulation			
Deviation range		max. 0.4 x demod. BW	
AF	•		
Offline demodulation		DC/0.001 to 0.2 x demod. BW	1
Realtime demodulation	DC/	'30 Hz to 0.2 x demod. BW, max.	20 kHz
Error (AF up to 0.1 x demod. BW)		<5% of result + residual FM	
Distortion (realtime demodulation) RF ≤1 GHz, demod. BW		>50 dB	
≥10 kHz, SINAD 1 kHz with $\Delta f = 0.2$ x demod. BW, LP 3 kHz		> 00 dB	
Residual FM (demod. BW ≤200 kHz, lowpass 5% of demod.	BW or 3 kHz, rms)		
f <1 GHz	≤ 10 Hz	<u> </u>	 ≤ 20 Hz
f ≥1 GHz	≤10 Hz x √f/1GHz	≤ 20 Hz	x $\sqrt{f/1GHz}$
Incidental FM with AM (demod. BW ≤200 kHz, m = 50%, f	mod = 1 kHz, lowpass 5% of demod	lulation BW or 3 kHz)	
f ≤100 MHz	≤50 Hz + residual FM		+ residual FM
f ≥100 MHz	≤50 Hz x f/100 MHz	<100 H	z x f/100 MHz
	+ residual FM		sidual FM
Phase demodulation			
Deviation range		up to 10 rad	
AF			
Offline demodulation	DC/ 0.001 x demod. BW to 0	0.1 x demod. BW, max. 0.4 x den smaller limit value applies	nod. BW)/(phase deviation/rad)
Realtime demodulation	200 Hz to 15 k	Hz, max. 0.1 x demod. BW, max.	0.4 x demod. BW,
	max. 0.4 x demod.	BW/(phase deviation/rad), sma	ller limit value applies
Error		≤5% of result + residual φM	
Distortion ⁴⁾ (realtime demod.) RF≤1 GHz, demod. BW ≥10 kHz, SINAD 1 kHz with phase deviation/ rad = 0.2 x demod. BW/1 kHz, HP 300 Hz, LP 3 kHz		>50 dB	
Residual φM Demod. BW ≤200 kHz, offline demodulation, lowpass 5% of demod. BW, rms f <100 MHz	≤0.03 rad	≤	0.03 rad
f >100 MHz	≤0.03 rad x f/100 MHz	≤0.06 ra	d x f/100 MHz
Realtime demodulation (HP 300 Hz, LP 3 kHz, rms)			
f <1 GHz	≤0.01 rad	<u>≤</u>	0.02 rad
f >1 GHz	≤0.01 rad x √f/1GHz	≤0.02 ra	d x √f / 1GHz
Incidental jM with AM demod. BW ≤200 kHz, m = 50%, f _{mod} = 1 kHz, lowpass 5% of demod. BW or 3 kHz		≤0.05 rad + residual φM	• • • •
Measurement of unmodulated carrier power			
Measurement error limit, (ref. level to ref. level –30 dB)		1.5 dB	
SINAD measurements			
Realtime demodulation, AF = 1 kHz \pm 4 x 10 $^{-4}$ x demod. BV	V		
		dB + error due to demodulator	CINIAD

	R&S FSIQ3	R&S FSIQ7	R&S FSIQ26
Display of AF frequencies			
Range			
Offline demodulation		0.001 to 0.3 x demod. BW	
Realtime demodulation		30 Hz to 0.3 x demod. BW, max. 20) kHz
Resolution		1 mHz to 1 Hz	
Error (S/N ≥40 dB)	1 x 10 ⁻⁶ x demo	d. BW + error of reference freque	ncy +1 mHz ±1 digit
AF filters		<u> </u>	, ,
Realtime demodulation			
Lowpass		3 kHz, 15 kHz (Butterworth, 12 dB/	oct.)
Highpass		30 Hz, 300 Hz (6 dB/oct.)	
Weighting filters		CCITT P.53, C message	
Offline demodulation		<u> </u>	
Lowpass	5'	%, 10%, 25% of demod. BW (12 dE	3/oct.)
Audio demodulation		,,,,,,,	
Modulation modes		AM and FM	
Audio output		speaker and phone jack	
Marker stop time in spectrum mode		100 ms to 60 s	
Trigger functions			
Trigger			
Span ≥10 Hz		free run, line, video, RF level, exte	ernal
Span = 0 Hz		lus pretrigger, posttrigger, trigger	
with digital demodulation		and synchronization to bit sequer	
with analog demodulation	pido saiot niggo.	plus trigger to demodulated Al	
Delayed sweep	I	prao inggor to domodalatou ri	
Trigger source	calculated		
Delay time	100 ns to 10 s, resolution min. 1 µs or 1% of delay time		
Error of delay time	$\pm (1 \mu s + (0.05\% x delay time))$		
Delayed sweep time	2 µs to 1000 s		
Gated sweep		Σ μο το 1000 σ	
Trigger source		external, RF level	
Gate delay		1 µs to 100 s	
Gate length	1 us to 1	00 s, resolution min. 1 µs or 1% o	f nate length
Error of gate length	1 40 to 1	$\pm (1 \mu s + (0.05\% x gate length)$	
Gap sweep (span = 0 Hz)		±(1 po 1 (0.0070 x gato longal)	11
Trigger source		free run, line, video, RF level, exte	ernal
Pretrigger		00 s, resolution 50 ns, dependent of	
Trigger to gap time		00 s, resolution 50 ns, dependent o	· · · · · · · · · · · · · · · · · · ·
Gap length	1 40 to 10	1 µs to 100 s, resolution 50 ns	
Inputs and outputs (front panel)		1 μο το 100 ο, 10001ατίοπ ου πο	2
RF input	N female, 50 Ω	N female, 50 Ω	adapter system, 50 Ω, N male and female 3.5 mm male and female
VSWR (RF attenuation ≥10 dB)			
f <3.5 GHz		<1.5	
f <7 GHz	-		<2.0
f <26.5 GHz		_	<3
Attenuator	(dB to 70 dB, selectable in 10 dB	
Probe power supply		V DC, -12.6 V DC and ground, max	
Supply and coding connector for antennas,		12-pin Tuchel	
etc (antenna code)	12 piii tuonoi		
Supply voltages	±10 V, max. 100 mA, ground		
AF output	$Z_{\text{out}} = 10 \ \Omega$, jack plug		
Open-circuit voltage	adjustable up to 1.5 V		

	R&S FSIQ3	R&S FSIQ7	R&S FSIQ26		
Inputs & outputs (rear panel)			•		
IF 21.4 MHz	$Z_{\text{out}} = 50 \ \Omega$, B	$Z_{out} = 50 \Omega$, BNC female, bandwidth >1 kHz or resolution bandwidth			
Level	0 d	Bm at reference level, mixer level >-	60 dBm		
Video output		$Z_{out} = 50 \Omega$, BNC female			
Voltage (RBW ≥1 kHz)	0 V to	1 V, full scale (open-circuit voltage); I	og scaling		
Reference frequency		•			
Output, usable as input		BNC female			
Output frequency		10 MHz			
Level		10 dBm nominal			
Input		1 MHz to 16 MHz, integer MHz			
Required level		$>$ 0 dBm from 50 Ω			
Other data					
Sweep output	BNC femal	e, 0 V to +10 V, proportional to displa	aved frequency		
Power supply connector for noise source		BNC female, 0 V and 28 V, switche			
External trigger/gate input		BNC female, $>$ 10 k Ω	<u> </u>		
Voltage		-5 V to +5 V, adjustable			
GPIB remote control		interface to IEC 60625 (IEEE 488.2	1)		
Command set		SCPI 1994.0	1		
Connector		24-pin Amphenol female			
nterface functions	SH	1, AH1, T6, L4, SR1, RL1, PP1, DC1, D	T1. C11		
Serial interface		2-C (COM1 and COM2), 9-pin female			
Mouse interface		PS/2 compatible			
Printer interface	parall	el (Centronics compatible) or serial (F	RS-232-C)		
Keyboard connector	·	5-pin DIN female for MF2 keyboard			
Vser interface		25-pin Canon female			
Connector for external monitor (VGA)		15-pin female			
General data					
Display		24 cm TFT colour display (9.5")			
Resolution		640 x 480 pixels (VGA resolution)			
Mass memory	1	1.44 Mbyte 3½" floppy disk drive, hard disk			
Operating temperature range					
Nominal temperature range		+5°C to +40°C			
imit temperature range		0°C to +50°C			
Storage temperature range		-40°C to +70°C			
Humidity	+	40°C at 95% relative humidity (IEC 6	0068)		
Mechanical stress					
Sinusoidal vibration	5 Hz to 150 Hz, max. 2 g	at 55 Hz; 0.5 g from 55 Hz to 150 Hz; MIL-T-28800D, class 5	to IEC 600686, IEC 601010,		
Random vibration		10 Hz to 300 Hz, acceleration 1.2 g r	ms		
Shock	40 g shock spect	40 g shock spectrum, to MIL-STD-810D and MIL-T-28800D, classes 3 and 5			
Recommended calibration interval	1 year	1 year (2 years for operation with external reference)			
RFI suppression	to EMC direc	ctive of EU (89/336/EEC) and German	EMC legislation		
Power supply					
AC supply	200 V to 240 V: 50 Hz to 6	0 Hz, 100 V to 120 V: 50 Hz to 400 Hz	protection class I to VDE 411		
Power consumption	195 VA	210 VA	245 VA		
Safety	to EN 610	to EN 61010-1, UL 3111-1, CDA C22.2 No. 1010-1, IEC 601010			
Test mark		VDE, GS, UL, cUL			
Dimensions in mm (W x H x D)	435)	x 236 x 460	435 x 236 x 570		
Weight	24 kg	24.5 kg	26.5 kg		

¹⁾ After 30 days of operation.

After 30 days of operation.
 Valid for span > 100 kHz.
 For frequencies > 7 GHz: error limit after calling peaking function. For sweep times < 10 ms/GHz: additional error 1.5 dB.
 For frequencies > 1 GHz the specified values have to be multiplied by 10^{0.552 x lg} (f/GHz / 1 GHz).
 For frequencies > 1 GHz the specified values have to be multiplied by 10^{0.354 x lg} (f/GHz / 1 GHz).
 x_{dev} = 2 x 10⁻⁴ x f_{Symb} x (points per symbol) Hz.

Specifications of options

Option	
1 dB Input Attenuator R&S FSE-B13	
Frequency range	0 Hz to 7 GHz (stop frequency ≤7 GHz)
Setting range of RF attenuation	0 dB to 70 dB
Step width	1 dB
Additional attenuation error limit	<0.1 dB
External Mixer Output R&S FSE-B21	
LO output /IF input (front)	SMA connector female, 50 Ω
LO signal	7.5 GHz to 15.2 GHz
Level	+15.5 dBm ±3 dB
IF signal	741.4 MHz
Full-scale level	−20 dBm
IF input (front)	SMA connector female, 50 Ω
IF signal	741.4 MHz
Full-scale level	−20 dBm
Level measurement error limit at IF inputs (IF level –30 dBm, reference level –20 dBm, RBW 30 kHz)	<1 dB

Ordering information

Order designation	Туре	Order No.
Signal Analyzer 20 Hz to 3.5 GHz	R&S FSIQ 3	1119.5005.13
Signal Analyzer 20 Hz to 7 GHz	R&S FSIQ 7	1119.5005.17
Signal Analyzer 20 Hz to 26.5 GHz	R&S FSIQ 26	1119.6001.27
Accessories supplied		
Keyboard, mouse, power cable, operating manual, spare fuses	R&S FSIQ 3/7/26	
Only R&S FSIQ 26		
Test-port adapter N female		1021.0512.00
3.5 mm female		1021.0535.00

Options

Order designation	Туре	Order No.
Hardware		
7 GHz Frequency Extension for R&S FSIQ3	R&S FSE-B2	1073.5044.02
Tracking Generator 3.5 GHz for R&S FSIQ3	R&S FSE-B8 ¹⁾	1066.4469.02
Tracking Generator 3.5 GHz with I/Q Modulator for R&S FSIQ3	R&S FSE-B9 ¹⁾	1066.4617.02
Tracking Generator 7 GHz for R&S FSIQ7/26	R&S FSE-B10 ¹⁾	1066.4769.02
Tracking Generator 7 GHz with I/Q Modulator for R&S FSIQ7/26	R&S FSE-B11 ¹⁾	1066.4917.02
Switchable Attenuator for Tracking Generator	R&S FSE-B12 ²⁾	1066.5065.02
1 dB Attenuator	R&S FSE-B13 ²⁾	1119.6499.02
Ethernet Interface, 15-contact AUI connector	R&S FSE-B16	1073.5973.02
Ethernet Interface, Thin-wire BNC connector	R&S FSE-B16	1073.5973.03
Ethernet Interface, RJ45 (twisted pair)	R&S FSE-B16	1073.5973.04
2nd IEC/IEEE Bus Interface	R&S FSE-B17	1066.4017.02
Removable Harddisk	R&S FSE-B18 ³⁾	1088.6993.02
2nd Hard Disk for R&S FSE-B18	R&S FSE-B19	1088.7248.02
External Mixer Input/Output for R&S FSIQ26	R&S FSE-B21	1084.7243.02
DSP and I/Q Memory Extension 2 x 512 k	R&S FSIQ-B70	1119.6747.02
Harmonic Mixer 40 GHz to 60 GHz	R&S FS-Z60 ¹⁾	1089.0799.02
Harmonic Mixer 50 GHz to 75 GHz	R&S FS-Z75 ¹⁾	1089.0847.02
Harmonic Mixer 60 GHz to 90GHz	R&S FS-Z90 ¹⁾	1089.0899.02
Harmonic Mixer 75 GHz to 110 GHz	R&S FS-Z110 ¹⁾	1089.0947.02

Order designation	Туре	Order No.
Software		
Noise Measurement Software	R&S FS-K3 ¹⁾	1057.3028.02
Phase Noise Measurement Software	R&S FS-K4 ¹⁾	1108.0088.02
GSM Application Firmware, Mobile	R&S FSE-K10 ¹⁾	1057.3092.02
GSM Application Firmware, BTS	R&S FSE-K11 ¹⁾	1057.3392.02
EDGE Application Firmware Extension, Mobile	R&S FSE-K20 ¹⁾⁴⁾	1106.4086.02
EDGE Application Firmware Extension, BTS	R&S FSE-K21 ¹⁾⁵⁾	1106.4186.02
850 MHz Application Firmware Extension, GSM mobile test	R&S FSE-K30 ⁶⁾	1140.5098.02
850 MHz Application Firmware Extension, GSM BTS test	R&S FSE-K31 ⁷⁾	1140.5198.02
Application Firmware for cdmaOne BTS code domain power measurement	R&S FSIQ-K71 ¹⁾⁸⁾	1126.4498.02
WCDMA/3GPP Application Firmware, BTS	R&S FSIQ-K72 ¹⁾⁸⁾	1126.4746.02
WCDMA/3GPP Application Firmware, Mobile (UE)	R&S FSIQ-K73 ¹⁾⁸⁾	1153.1009.02

¹⁾ See separate data sheets.

Recommended extras

Order designation	Туре	Order No.
Service Kit	R&S FSE-Z1	1066.3862.02
DC Block, 5 MHz to 7 GHz, N connector	R&S FSE-Z3	4010.3895.00
DC Block 10 kHz to 18 GHz, N connector	R&S FSE-Z4	1084.7443.02
Microwave Measurement Cable and Adapter Set for R&S FSIQ 26	R&S FSE-Z15	1046.2002.02
Headphones	_	0708.9010.00
IEC/IEEE Bus Cable, 1 m	R&S PCK	0292.2013.10
IEC/IEEE Bus Cable, 2 m	R&S PCK	0292.2013.20
19" Rack Adapter with front handles	R&S ZZA-95	0396.4911.00
Probe Power Connectors 3-contact	_	1065.9480.00
Matching Pads, 75 Ω		
L Section	R&S RAM	0358.5414.02
Series Resistor, 25 Ω	R&S RAZ	0358.5714.02
SWR Bridge, 5 MHz to 3000 MHz	R&S ZRB2	0373.9017.52
SWR Bridge, 40 kHz to 4 GHz	R&S ZRC	1039.9492.52
High-Power Attenuators, 100 W	1	
3/6/10/20/30 dB	R&S RBU 100	1073.8820.XX (XX = 03/06/10/20/ 30)
High-Power Attenuators, 50 W		
3/6/10/20/30 dB	R&S RBU 50	1073.8895.XX (XX = 03/06/10/20/ 30)
Preamplifier, 20 MHz to 1000 MHz	R&S ESV-Z3	0397.7014.52
For R&S FSIQ 26 only:	<u>.</u>	
Test-Port Adapter, N male	_	1021.0541.00
Test-Port Adapter, 3.5 mm male	-	1021.0529.00

²⁾ R&S FSE-B12 and R&S FSE-B13 cannot be installed simultaneously.

³⁾ Cannot be retrofitted, factory fitted only.

⁴⁾ R&S FSE-K10 required.

⁵⁾ R&S FSE-K11 required.

R&S FSE-K11 required. for EDGE R&S FSE-K20 is additionally necessary.

R&S FSE-K11 required, for EDGE R&S FSE-K21 is additionally necessary.

R&S FSIQ-B70 required. Additional modifications may be required if the R&S FSIQ-B70 is retrofitted.

